

Ministerium für Bildung und Kultur

06/2017

Programme

LFA / DFG

Mathématiques

Séries ES 1^{ère} T^{ale} Programme complémentaire

Travail validé par le ministère de la formation et de la culture du Land de la Sarre, le ministère de la culture de la jeunesse et du sport du Land du Bade-Wurtemberg et le ministère de l'Éducation nationale de la République française

<u>Programme complémentaire – Série ES – Classes de Première et Terminale</u>

- Algorithmique :

Contenu	Compétences
- tableau de nombres	- algorithme de tri (par insertion/bulle) d'un tableau de valeurs (cf p 10 du programme : ensemble de nombres, afin d'établir, par exemple, un palmarès des ventes, ordonner une série statistique, déterminer la plus grande ou la plus petite valeur d'une série, la valeur médiane, le mode)
	- calcul de tous les termes d'une suite (définie explicitement ou implicitement) jusqu'à un certain rang, avec ou sans tableau selon l'espace mémoire alloué.
	- mise en œuvre de la méthode de la sécante et de l'algorithme de Newton
- fonction rand	- simulation d'expériences aléatoires conduisant à des lois usuelles
	- Calcul approché d'une intégrale par la méthode de Monte-Carlo

- Probabilités continues :

Contenu	Compétences
Variables aléatoires continues et notion de loi à	Les élèves :
densité	- savent, sur des exemples, distinguer une variable
- Notion de variables aléatoires continues	aléatoire discrète d'une variable aléatoire continue.
- Notion de lois à densité	- connaissent et savent utiliser la fonction de densité
- Loi uniforme sur [a; b]	de la loi uniforme sur [a; b] pour calculer une
- Espérance d'une variable aléatoire suivant une loi	probabilité.
uniforme.	- connaissent la définition d'une fonction de densité
- Relation entre fonction de densité sur un intervalle	et savent vérifier, sur des exemples choisis, si une
et fonction de répartition pour une loi continue	fonction est une fonction de densité.
Loi exponentielle	Les élèves :
	- savent calculer une probabilité dans le cadre de la
	loi exponentielle.
	- déterminent l'espérance d'une variable suivant une
	loi exponentielle grâce à la formule
	$\lim_{x\to+\infty}\int_0^x tf(t)dt$ où f représente la fonction de
	densité de la loi exponentielle.
	- savent que l'espérance d'une variable aléatoire
	suivant une loi exponentielle de paramètre λ est égale

	$\dot{a} \frac{1}{\lambda}$
Lois normales et courbe de Gauss	Les élèves :
- Loi normale $N(\mu; \sigma^2)$ d'espérance μ et d'écart-	- connaissent les notions de loi normale et de loi
type σ .	normale centrée réduite
- Loi normale centrée réduite $N(0;1)$	- savent que pour un échantillon assez grand,
- Théorème de Moivre - Laplace	l'histogramme associé s'approche d'une courbe
	continue (notamment d'une courbe de Gauss dans le
	cas des variables aléatoires suivant une loi binomiale)
	- connaissent la fonction de densité $f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$
	de la loi normale $N(0; 1)$ et savent la représenter
	graphiquement.
	- connaissent l'expression de la fonction, la
	représentation graphique et les propriétés de la fonction de répartition associée
	- savent qu'une variable aléatoire X suit une loi
	$N(\mu; \sigma^2)$ si la variable aléatoire $Z = \frac{x - \mu}{\sigma}$ suit la loi
	normale $N(0; 1)$. - utilisent une calculatrice, un tableur ou la table de la
	loi $N(0;1)$ pour calculer une probabilité dans le
	cadre d'une loi normale $N(\mu; \sigma^2)$.
	- connaissent les valeurs approchées $u_{0,05} \approx 1,96$ et
	,
	$u_{0,01} \approx 2,58$. - savent approximer une loi binomiale par une
	normale quand cela s'y prête (expérience de Galton)
	et calculer des probabilités grâce au théorème de
	Moivre-Laplace
	morrie Empiace